Histone deacetylase 3 indirectly modulates tubulin acetylation.

نویسندگان

  • Travis Bacon
  • Caroline Seiler
  • Marcin Wolny
  • Ruth Hughes
  • Peter Watson
  • John Schwabe
  • Ronald Grigg
  • Michelle Peckham
چکیده

Histone deacetylase 3 (HDAC3), a member of the Class I subfamily of HDACs, is found in both the nucleus and the cytoplasm. Its roles in the nucleus have been well characterized, but its cytoplasmic roles are still not elucidated fully. We found that blocking HDAC3 activity using MI192, a compound specific for HDAC3, modulated tubulin acetylation in the human prostate cancer cell line PC3. A brief 1 h treatment of PC3 cells with MI192 significantly increased levels of tubulin acetylation and ablated the dynamic behaviour of microtubules in live cells. siRNA-mediated knockdown (KD) of HDAC3 in PC3 cells, significantly increased levels of tubulin acetylation, and overexpression reduced it. However, the active HDAC3-silencing mediator of retinoic and thyroid receptors (SMRT)-deacetylase-activating domain (DAD) complex did not directly deacetylate tubulin in vitro. These data suggest that HDAC3 indirectly modulates tubulin acetylation.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Domain-selective small-molecule inhibitor of histone deacetylase 6 (HDAC6)-mediated tubulin deacetylation.

Protein acetylation, especially histone acetylation, is the subject of both research and clinical investigation. At least four small-molecule histone deacetylase inhibitors are currently in clinical trials for the treatment of cancer. These and other inhibitors also affect microtubule acetylation. A multidimensional, chemical genetic screen of 7,392 small molecules was used to discover "tubacin...

متن کامل

A novel GRK2/HDAC6 interaction modulates cell spreading and motility.

Cell motility and adhesion involves dynamic microtubule (MT) acetylation/deacetylation, a process regulated by enzymes as HDAC6, a major cytoplasmic α-tubulin deacetylase. We identify G protein-coupled receptor kinase 2 (GRK2) as a key novel stimulator of HDAC6. GRK2, which levels inversely correlate with the extent of α-tubulin acetylation in epithelial cells and fibroblasts, directly associat...

متن کامل

Highly potent and selective histone deacetylase 6 inhibitors designed based on a small-molecular substrate.

To find novel histone deacetylase 6 (HDAC6)-selective inhibitors and clarify the structural requirements for HDAC6-selective inhibition, we prepared thiolate analogues designed based on the structure of an HDAC6-selective substrate and evaluated the histone/alpha-tubulin acetylation selectivity by Western blot analysis. Aliphatic compounds 17b-20b selectively caused alpha-tubulin acetylation ov...

متن کامل

Roles of GRK2 in cell signaling beyond GPCR desensitization: GRK2-HDAC6 interaction modulates cell spreading and motility.

G protein-coupled receptor kinase 2 (GRK2) is a ubiquitous, essential protein kinase that is emerging as an integrative node in many signaling networks. Moreover, changes in GRK2 abundance and activity have been identified in several inflammatory, cardiovascular disease, and tumor contexts, suggesting that those alterations may contribute to the initiation or development of pathologies. GRKs we...

متن کامل

Modulation of histone deacetylase 6 (HDAC6) nuclear import and tubulin deacetylase activity through acetylation.

The reversible acetylation of histones and non-histone proteins by histone acetyltransferases and deacetylases (HDACs) plays a critical role in many cellular processes in eukaryotic cells. HDAC6 is a unique histone deacetylase with two deacetylase domains and a C-terminal zinc finger domain. HDAC6 resides mainly in the cytoplasm and regulates many important biological processes, including cell ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • The Biochemical journal

دوره 472 3  شماره 

صفحات  -

تاریخ انتشار 2015